Born: about 85 in EgyptDied: about 165 in Alexandria, Egypt
One of the most influential Greek astronomers and geographers of his time, Ptolemy propounded the geocentric theory in a form that prevailed for 1400 years. However, of all the ancient Greek mathematicians, it is fair to say that his work has generated more discussion and argument than any other. We shall discuss the arguments below for, depending on which are correct, they portray Ptolemy in very different lights. The arguments of some historians show that Ptolemy was a mathematician of the very top rank, arguments of others show that he was no more than a superb expositor, but far worse, some even claim that he committed a crime against his fellow scientists by betraying the ethics and integrity of his profession.
We know very little of Ptolemy's life. He made astronomical observations from Alexandria in Egypt during the years AD 127-41. In fact the first observation which we can date exactly was made by Ptolemy on 26 March 127 while the last was made on 2 February 141. It was claimed by Theodore Meliteniotes in around 1360 that Ptolemy was born in Hermiou (which is in Upper Egypt rather than Lower Egypt where Alexandria is situated) but since this claim first appears more than one thousand years after Ptolemy lived, it must be treated as relatively unlikely to be true. In fact there is no evidence that Ptolemy was ever anywhere other than Alexandria.
His name, Claudius Ptolemy, is of course a mixture of the Greek Egyptian 'Ptolemy' and the Roman 'Claudius'. This would indicate that he was descended from a Greek family living in Egypt and that he was a citizen of Rome, which would be as a result of a Roman emperor giving that 'reward' to one of Ptolemy's ancestors.
We do know that Ptolemy used observations made by 'Theon the mathematician', and this was almost certainly Theon of Smyrna who almost certainly was his teacher. Certainly this would make sense since Theon was both an observer and a mathematician who had written on astronomical topics such as conjunctions, eclipses, occultations and transits. Most of Ptolemy's early works are dedicated to Syrus who may have also been one of his teachers in Alexandria, but nothing is known of Syrus.
Ptolemy's "Almagest" shares with Euclid's "Elements" the glory of being the scientific text longest in use. From its conception in the second century up to the late Renaissance, this work determined astronomy as a science. During this time the "Almagest" was not only a work on astronomy; the subject was defined as what is described in the "Almagest".
Ptolemy describes himself very clearly what he is attempting to do in writing the work
We shall try to note down everything which we think we have discovered up to the present time; we shall do this as concisely as possible and in a manner which can be followed by those who have already made some progress in the field. For the sake of completeness in our treatment we shall set out everything useful for the theory of the heavens in the proper order, but to avoid undue length we shall merely recount what has been adequately established by the ancients. However, those topics which have not been dealt with by our predecessors at all, or not as usefully as they might have been, will be discussed at length to the best of our ability.
Ptolemy devised new geometrical proofs and theorems. He obtained, using chords of a circle and an inscribed 360-gon, the approximation
π = 3 17/120 = 3.14166
and, using √3 = chord 60°,
√3 = 1.73205.
He used formulae for the Crd function which are analogous to our formulae for sin(a + b), sin(a - b) and sin a/2 to create a table of the Crd function at intervals of 1/2 a degree.
In examining the theory of the sun, Ptolemy compares his own observations of equinoxes with those of Hipparchus and the earlier observations Meton in 432 BC. He confirmed the length of the tropical year as 1/300 of a day less than 365 1/4 days, the precise value obtained by Hipparchus. Since, as Ptolemy himself knew, the accuracy of the rest of his data depended heavily on this value, the fact that the true value is 1/128 of a day less than 365 1/4days did produce errors in the rest of the work. We shall discuss below in more detail the accusations which have been made against Ptolemy, but this illustrates clearly the grounds for these accusations since Ptolemy had to have an error of 28 hours in his observation of the equinox to produce this error, and even given the accuracy that could be expected with ancient instruments and methods, it is essentially unbelievable that he could have made an error of this magnitude
No comments:
Post a Comment